He Y, Shi JZ, Zhang RJ, et al.
Reprod Sci. 2017 Feb;24(2):324-331.
Oxidative stress is generated during the pathophysiology of endometriosis (EMT). Hydrogen (H2) has been demonstrated as a gas antioxidant. The aim of the present study is to evaluate the protective effect of H2 on EMT in rats. Sprague Dawley rats with surgically induced EMT were randomly received the inhalation of 67% H2-33% oxygen (O2) mixture (1 h/d, 4 weeks) immediately after the EMT surgery or 4 weeks after the operation. The mixture of 67% N2-33% O2 was also used to exclude the possible influence of the increased O2. Eight weeks after the operation, the endometrial tissues were weighted and analyzed using histology, immunohistochemistry, and real-time polymerase chain reaction. Several antioxidant enzymes and malondialdehyde were also measured in serum and tissue. The estrous cycles were monitored for H2 safety.
The results showed that both profiles of high-dose H2 breathing reduced the size of the endometrial explants, inhibited cell proliferation, improved superoxide dismutase, glutathione peroxidase, malondialdehyde, and catalase activities, and regulated the expression of matrix metalloproteinase 9 and cyclooxygenase 2. However, inhalation of the same dose of nitrogen failed to show the protection. High-dose H2 breathing did not change the normal estrous cyclicity. These results suggest that 67% H2-33% O2 breathing has a beneficial effect on EMT model rats, and inhalation of a high dose of H2 could be a potential method applied in clinical practice.
He X, Wang SY, Yin CH, et al.
Chin Med J (Engl). 2016 5th Oct;129(19):2331-7.
Premature ovarian failure (POF) is a disease that affects female fertility but has few effective treatments. Ovarian reserve function plays an important role in female fertility. Recent studies have reported that hydrogen can protect male fertility. Therefore, the authors explored the potential protective effect of hydrogen-rich water on ovarian reserve function through a mouse immune POF model.
To set up immune POF model, fifty female BALB/c mice were randomly divided into four groups: Control (mice consumed normal water, n = 10), hydrogen (mice consumed hydrogen-rich water, n = 10), model (mice were immunized with zona pellucida glycoprotein 3 [ZP3] and consumed normal water, n = 15), and model-hydrogen (mice were immunized with ZP3 and consumed hydrogen-rich water, n = 15) groups. After 5 weeks, mice were sacrificed. Serum anti-Müllerian hormone (AMH) levels, granulosa cell (GC) apoptotic index (AI), B-cell leukemia/lymphoma 2 (Bcl-2), and BCL2-associated X protein (Bax) expression were examined. Analyses were performed using SPSS 17.0 (SPSS Inc., Chicago, IL, USA) software. Immune POF model, model group exhibited markedly reduced serum AMH levels compared with those of the control group (5.41 ± 0.91 ng/ml vs. 16.23 ± 1.97 ng/ml, P = 0.033) and the hydrogen group (19.65 ± 7.82 ng/ml, P = 0.006).
The model-hydrogen group displayed significantly higher AMH concentrations compared with that of the model group (15.03 ± 2.75 ng/ml vs. 5.41 ± 0.91 ng/ml, P = 0.021). The GC AI was significantly higher in the model group (21.30 ± 1.74%) than those in the control (7.06 ± 0.27%), hydrogen (5.17 ± 0.41%), and model-hydrogen groups (11.24 ± 0.58%) (all P ❰0.001). The GC AI was significantly higher in the model-hydrogen group compared with that of the hydrogen group (11.24 ± 0.58% vs. 5.17 ± 0.41%, P = 0.021). Compared with those of the model group, ovarian tissue Bcl-2 levels increased (2.18 ± 0.30 vs. 3.01 ± 0.33, P = 0.045) and the Bax/Bcl-2 ratio decreased in the model-hydrogen group. Hydrogen-rich water may improve serum AMH levels and reduce ovarian GC apoptosis in a mouse immune POF model induced by ZP3.
Gokalp N, Basaklar AC, Sonmez K, et al.
J Pediatr Surg. 2016 Oct 21. pii: S0022-3468(16)30467-5.
The present study aimed to investigate the effects of hydrogen rich saline solution (HRSS) in a rat model of ovarian ischemia-reperfusion injury. Thirty-six female Wistar-albino rats were grouped randomly, into six groups of six rats. The groups were classified as: sham (S), hydrogen (H), torsion (T), torsion/detorsion (TD), hydrogen-torsion (HT), and hydrogen-torsion/detorsion (HTD). Bilateral adnexal torsion was performed for 3h in all torsion groups. HRSS was given 5ml/kg in hydrogen groups intraperitoneally. Malondialdehyde (MDA) and glutathione-S-transferase (GST) levels were measured in both the plasma and tissue samples. Tissue sections were evaluated histopathologically, and the apoptotic index was detected by TUNEL assay.
The results were analyzed by Kruskal-Wallis and Pearson chi-square tests using computer software, SPSS Version 20.0 for Windows. The MDA levels were higher and GST levels were lower in the torsion and detorsion groups when compared to other groups, but the differences were insignificant (P>0.05). The MDA levels were lower and GST levels were higher in the HT and HTD groups compared with the T and TD groups (P>0.05). Follicular injury, edema, vascular congestion, loss of cohesion and apoptotic index were higher in the torsion groups but decreased in the groups that received HRSS. According to histopathological and biochemical examinations, HRSS is effective in attenuating ischemia-reperfusion induced ovary injury.
The AquaCure is a practical, reliable and safe HydrOxy electrolyzer, pioneered by George Wiseman. After extensive testing on plants, animals, birds and fish, Wiseman designed an electrolyzer that could be safely used on humans, and had the ability to heal a vast array of ailments.
Learn More About The Aquacure AC50
Coming Soon
e: aquacureac50@gmail.com
Free Shipping In Continental USA
For International Orders
Call +1 (207) 460-8929
PLEASE NOTE: For LEGAL REASONS we need to state up front that the AquaCure AC50 is NOT defined as a MEDICAL DEVICE by the FDA and therefore we cannot legally recommend it for human use.