How May We Help You? ‭Text or Call +1 (207) 460-8929

SCIENTIFIC STUDIES

Chronic Pain

  • 1. H Treatment Attenuated Pain Behavior and Cytokine Release Through the HO-1/CO Pathway in a Rat Model of Neuropathic Pain.

    Chen, Y., et al.
    Inflammation, 2015.

    Neuropathic pain (NP) is characterized by persistent pain, tactile allodynia, or hyperalgesia. Peripheral nerve injury contributes to rapid progress of inflammatory response and simultaneously generates neuropathic pain. Hydrogen (H2) has anti-inflammation, anti-apoptosis, and anti-oxidative stress effects. Therefore, we hypothesized that H2 treatment could alleviate allodynic and hyperalgesic behaviors and the release of inflammatory factors in rats with neuropathic pain. Peripheral neuropathic pain was established by chronic constriction injury of sciatic nerve in rats.

    H2 was given twice through intraperitoneal injection at a daily dose of 10 mL/kg during days 1-7 after the operation. Hyperalgesia and allodynia were tested, pro-inflammatory factors of dorsal root ganglia (DRG) and the spinal cord were measured by enzyme-linked immunosorbent assay (ELISA) during days 1-14 after the operation, and heme oxygenase (HO)-1 messenger RNA (mRNA) and protein expression and activities were measured at day 14 after sciatic nerve injury in rats. After Sn (IV) protoporphyrin IX dihydrochloride (SnPP)-IX, hemin, and carbon monoxide-releasing molecule (CORM)-2 had been given for chronic constriction injury (CCI) in rats, the above indicators were assessed.

    We found that H2 clearly inhibited hyperalgesia and allodynia in neuropathic pain and also attenuated the pro-inflammatory cytokines TNF-α, IL-1β, and high-mobility group box (HMGB) 1. H2 improved HO-1 mRNA and protein expression and activities in the process of pain. SnPP-IX reversed the inhibitory effect of H2 on hyperalgesia and allodynia and on pro-inflammatory cytokines in DRG and the spinal cord. The antinociceptive and anti-inflammatory effects of H2 were involved in the activation of HO-1/CO signaling during neuropathic pain in rats.

  • 2. Hydrogen-rich saline attenuated neuropathic pain by reducing oxidative stress.

    Chen, Q., et al.
    Can J Neurol Sci, 2013. 40(6): p. 857-63.

    BACKGROUND:

    Reactive oxygen species (ROS) are often associated with persistent pains such as neuropathic and inflammatory pain. Hydrogen gas can reduce ROS and alleviate cerebral, myocardial, and hepatic ischemia/reperfusion injuries. In the present study, we aim to investigate whether hydrogen-rich saline can reduce neuropathic pain in a rat model of chronic constriction injury (CCI).

    METHODS:
    Thirty SD rats were randomly divided into three groups: sham group was administered sodium chloride by intrathecal injection (n=10); control groups underwent CCI surgery and were administered sodium chloride by intrathecal injection (n=10); vehicle group underwent CCI surgery and was administered hydrogen-rich saline by intrathecal injection (n=10). Drugs were administered in the dose of 100 ul/kg once a day at 0.5 hours before and 1-7 day after CCI surgery. The mechanical thresholds were tested at one day before and 3-14 day after CCI surgery.

    RESULTS:
    We found that hydrogen-rich saline significantly elevated the mechanical thresholds of neuropathic pain compared to vehicle (physiologic saline) control in CCI rats (p < 0.05); it also decreased the levels of myeloperoxidase, maleic dialdehyde, and protein carbonyl in spinal cord by 7 days post-chronic constriction injury(p < 0.05). In addition, hydrogen-rich saline also suppressed the expression of p38-mitogen-activated protein kinase (p38MAPK) and brain-derived neurotrophic factor (BDNF) in the spinal cord by 7 days post-chronic constriction injury (p < 0.01, p < 0.01, respectively), but had no effect on P2X4R (p > 0.05), an ATP receptor.

    CONCLUSION:
    Intrathecal injection of hydrogen-rich saline can decrease oxidative stress and the expression of p38MAPK and BDNF that may contribute to the elevated threshold of neuropathic pain in rat CCI model.

  • 3. Intrathecal Infusion of Hydrogen-Rich Normal Saline Attenuates Neuropathic Pain via Inhibition of Activation of Spinal Astrocytes and Microglia in Rats.

    Ge, Y., et al.
    PLoS One, 2014. 9(5): p. e97436.

    BACKGROUND:

    Reactive oxygen and nitrogen species are key molecules that mediate neuropathic pain. Although hydrogen is an established antioxidant, its effect on chronic pain has not been characterized. This study was to investigate the efficacy and mechanisms of hydrogen-rich normal saline induced analgesia.

    METHODOLOGY/PRINCIPAL FINDINGS:
    In a rat model of neuropathic pain induced by L5 spinal nerve ligation (L5 SNL), intrathecal injection of hydrogen-rich normal saline relieved L5 SNL-induced mechanical allodynia and thermal hyperalgesia. Importantly, repeated administration of hydrogen-rich normal saline did not lead to tolerance. Preemptive treatment with hydrogen-rich normal saline prevented development of neuropathic pain behavior. Immunofluorochrome analysis revealed that hydrogen-rich normal saline treatment significantly attenuated L5 SNL-induced increase of 8-hydroxyguanosine immunoreactive cells in the ipsilateral spinal dorsal horn. Western blot analysis of SDS/PAGE-fractionated tyrosine-nitrated proteins showed that L5 SNL led to increased expression of tyrosine-nitrated Mn-containing superoxide dismutase (MnSOD) in the spinal cord, and hydrogen-rich normal saline administration reversed the tyrosine-nitrated MnSOD overexpression. We also showed that the analgesic effect of hydrogen-rich normal saline was associated with decreased activation of astrocytes and microglia, attenuated expression of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the spinal cord.

    CONCLUSION/SIGNIFICANCE:
    Intrathecal injection of hydrogen-rich normal saline produced analgesic effect in neuropathic rat. Hydrogen-rich normal saline-induced analgesia in neuropathic rats is mediated by reducing the activation of spinal astrocytes and microglia, which is induced by overproduction of hydroxyl and peroxynitrite.

Open all Close all

About Us

The AquaCure is a practical, reliable and safe HydrOxy electrolyzer, pioneered by George Wiseman. After extensive testing on plants, animals, birds and fish, Wiseman designed an electrolyzer that could be safely used on humans, and had the ability to heal a vast array of ailments.

Learn More About The Aquacure AC50

Connect

Coming Soon

Contact Us

e: aquacureac50@gmail.com

Delivery Details

Free Shipping In Continental USA
For International Orders
Call ‭+1 (207) 460-8929

PLEASE NOTE: For LEGAL REASONS we need to state up front that the AquaCure AC50 is NOT defined as a MEDICAL DEVICE by the FDA and therefore we cannot legally recommend it for human use.

© 2024 | AquaCure AC50

Website Designed And Powered By: