How May We Help You? ‭Text or Call +1 (207) 460-8929

SCIENTIFIC STUDIES

Brain And Neurodegeneration

  • 1. Inhalation of Hydrogen Gas Protects Cerebrovascular Reactivity Against Moderate but Not Severe Perinatal Hypoxic Injury in Newborn Piglets.

    Bari, F., et al.
    Stroke, 2010. 41(4): p. E323-E323.

    Hydrogen is the most abundant chemical element in the Universe, but is seldom regarded as a therapeutic agent. Recent evidence has shown that hydrogen is a potent antioxidative, antiapoptotic and anti-inflammatory agent and so may have potential medical applications in cells, tissues and organs. There are several methods to administer hydrogen, such as inhalation of hydrogen gas, aerosol inhalation of a hydrogen-rich solution, drinking hydrogen dissolved in water, injecting hydrogen-rich saline (HRS) and taking a hydrogen bath.

    Drinking hydrogen solution (saline/pure water/other solutions saturated with hydrogen) may be more practical in daily life and more suitable for daily consumption. This review summarizes the findings of recent studies on the use of hydrogen in emergency and critical care medicine using different disease models.

  • 2. Hydrogen-rich saline attenuates neuronal ischemia-reperfusion injury by protecting mitochondrial function in rats.

    Cui, Y., et al.
    J Surg Res, 2014.

    BACKGROUND:

    Hydrogen, a popular antioxidant gas, can selectively reduce cytotoxic oxygen radicals and has been found to protect against ischemia-reperfusion (I/R) injury of multiple organs. Acute neuronal death during I/R has been attributed to loss of mitochondrial permeability transition coupled with mitochondrial dysfunction. This study was designed to investigate the potential therapeutic effect of hydrogen-rich saline on neuronal mitochondrial injury from global cerebral I/R in rats.

    MATERIALS AND METHODS:
    We used a four-vessel occlusion model of global cerebral ischemia and reperfusion, with Sprague-Dawley rats. The rats were divided randomly into six groups (n = 90): sham (group S), I/R (group I/R), normal saline (group NS), atractyloside (group A), hydrogen-rich saline (group H), and hydrogen-rich saline + atractyloside (group HA). In groups H and HA, intraperitoneal hydrogen-rich saline (5 mL/kg) was injected immediately after reperfusion, whereas the equal volume of NS was injected in the other four groups. In groups A and HA, atractyloside (15 μL) was intracerebroventricularly injected 10 min before reperfusion, whereas groups NS and H received equal NS. The mitochondrial permeability transition pore opening and mitochondrial membrane potential were measured by spectrophotometry. Cytochrome c protein expression in the mitochondria and cytoplasm was detected by western blot. The hippocampus mitochondria ultrastructure was examined with transmission electron microscope. The histologic damage in hippocampus was assessed by hematoxylin and eosin staining.

    RESULTS:
    Hydrogen-rich saline treatment significantly improved the amount of surviving cells(P ≤ 0.05). Furthermore, hydrogen-rich saline not only reduced tissue damage, the degree of mitochondrial swelling, and the loss of mitochondrial membrane potential but also preserved the mitochondrial cytochrome c content (P ≤ 0.05).

    CONCLUSIONS:
    Our study showed that hydrogen-rich saline was able to attenuate neuronal I/R injury, probably by protecting mitochondrial function in rats.

  • 3. Molecular Hydrogen in Drinking Water Protects against Neurodegenerative Changes Induced by Traumatic Brain Injury.

    Dohi, K., et al.
    PLoS One, 2014. 9(9): p. e108034.

    Traumatic brain injury (TBI) in its various forms has emerged as a major problem for modern society. Acute TBI can transform into a chronic condition and be a risk factor for neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, probably through induction of oxidative stress and neuroinflammation. Here, we examined the ability of the antioxidant molecular hydrogen given in drinking water (molecular hydrogen water; mHW) to alter the acute changes induced by controlled cortical impact (CCI), a commonly used experimental model of TBI.

    We found that mHW reversed CCI-induced edema by about half, completely blocked pathological tau expression, accentuated an early increase seen in several cytokines but attenuated that increase by day 7, reversed changes seen in the protein levels of aquaporin-4, HIF-1, MMP-2, and MMP-9, but not for amyloid beta peptide 1-40 or 1-42. Treatment with mHW also reversed the increase seen 4 h after CCI in gene expression related to oxidation/carbohydrate metabolism, cytokine release, leukocyte or cell migration, cytokine transport, ATP and nucleotide binding. Finally, we found that mHW preserved or increased ATP levels and propose a new mechanism for mHW, that of ATP production through the Jagendorf reaction. These results show that molecular hydrogen given in drinking water reverses many of the sequelae of CCI and suggests that it could be an easily administered, highly effective treatment for TBI.

  • 4. Hydrogen is Neuroprotective and Preserves Cerebrovascular Reactivity in Asphyxiated Newborn Pigs.

    Domoki, F., et al.
    Pediatric Research, 2010. 68(5): p. 387-392.

    Hydrogen (H2) has been reported to neutralize toxic reactive oxygen species. Oxidative stress is an important mechanism of neuronal damage after perinatal asphyxia. We examined whether 2.1% H2-supplemented room air (H2-RA) ventilation would preserve cerebrovascular reactivity (CR) and brain morphology after asphyxia/reventilation (A/R) in newborn pigs. Anesthetized, ventilated piglets were assigned to one of the following groups: A/R with RA or H2-RA ventilation (A/R-RA and A/R-H2-RA; n = 8 and 7, respectively) and respective time control groups (n = 9 and 7).

    Asphyxia was induced by suspending ventilation for 10 min, followed by reventilation with the respective gases for 4 h. After euthanasia, the brains were processed for neuropathological examination. Pial arteriolar diameter changes to graded hypercapnia (5-10% CO2 inhalation), and NMDA (10(-4) M) were determined using the closed cranial window/intravital microscopy before and 1 h after asphyxia. Neuropathology revealed that H2-RA ventilation significantly reduced neuronal injury induced by A/R in virtually all examined brain regions including the cerebral cortex, the hippocampus, basal ganglia, cerebellum, and the brainstem. Furthermore, H2-RA ventilation significantly increased CR to hypercapnia after A/R (% vasodilation was 23 ± 4% versus 41 ± 9%, p ≤ 0.05). H2-RA ventilation did not affect reactive oxygen species-dependent CR to NMDA. In summary, H2-RA could be a promising approach to reduce the neurologic deficits after perinatal asphyxia.

  • 5. In Vitro Physicochemical Properties of Neutral Aqueous Solution Systems (Water Products as Drinks) Containing Hydrogen Gas, 2-Carboxyethyl Germanium Sesquioxide, and Platinum Nanocolloid as Additives.

    Hiraoka, A., et al.
    Journal of Health Science, 2010. 56(2): p. 167-174.


    We studied the in vitro antioxidant activities of neutral aqueous solution systems (water products marketed as drinks) containing hydrogen gas (H2), 2-carboxyethyl germanium sesquioxide (Ge-132), and platinum (Pt) nanocolloid as additives. We evaluated the abilities of these aqueous solutions to inhibit the oxidation of biomolecules catalyzed by an enzyme and induced by reactive oxygen species (ROS) and also to scavenge ROS directly using electron spin resonance (ESR) spectrometry.

    The concentrations of inorganic elements including Ge and Pt were measured by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES). All the water products examined more or less inhibited the oxidation of 3,4-dihydroxyphenylalanine by tyrosinase and that of L-histidine in an L-ascorbic acid/Cu2+ reaction system.

    The results of ICP-MS and ICP-AES analyses revealed that Ge, Pt, and some major minerals existed in the water products at concentrations approximately equivalent to those reported by their manufacturers. The ESR spectra indicated that the dissolved Ge-132 molecules and the supplemented Pt nanocolloid particles reduced hydroxyl and superoxide anion radicals. However, under the conditions employed, aqueous H2 did not display such a scavenging ability for these ROS. Our results suggest that H2, Ge-132 and Pt nanocolloid dissolved or supplemented in neutral aqueous media exhibited antioxidant activities in vitro due to the direct scavenging of ROS and/or by other mechanisms.

Open all Close all

About Us

The AquaCure is a practical, reliable and safe HydrOxy electrolyzer, pioneered by George Wiseman. After extensive testing on plants, animals, birds and fish, Wiseman designed an electrolyzer that could be safely used on humans, and had the ability to heal a vast array of ailments.

Learn More About The Aquacure AC50

Connect

Coming Soon

Contact Us

e: aquacureac50@gmail.com

Delivery Details

Free Shipping In Continental USA
For International Orders
Call ‭+1 (207) 460-8929

PLEASE NOTE: For LEGAL REASONS we need to state up front that the AquaCure AC50 is NOT defined as a MEDICAL DEVICE by the FDA and therefore we cannot legally recommend it for human use.

© 2024 | AquaCure AC50

Website Designed And Powered By: